Airborne Gravity Data Denoising Based on Empirical Mode Decomposition: A Case Study for SGA-WZ Greenland Test Data

نویسندگان

  • Lei Zhao
  • Meiping Wu
  • René Forsberg
  • Arne Vestergaard Olesen
  • Kaidong Zhang
  • Juliang Cao
چکیده

Surveying the Earth’s gravity field refers to an important domain of Geodesy, involving deep connections with Earth Sciences and Geo-information. Airborne gravimetry is an effective tool for collecting gravity data with mGal accuracy and a spatial resolution of several kilometers. The main obstacle of airborne gravimetry is extracting gravity disturbance from the extremely low signal to noise ratio measuring data. In general, the power of noise concentrates on the higher frequency of measuring data, and a low pass filter can be used to eliminate it. However, the noise could distribute in a broad range of frequency while low pass filter cannot deal with it in pass band of the low pass filter. In order to improve the accuracy of the airborne gravimetry, Empirical Mode Decomposition (EMD) is employed to denoise the measuring data of two primary repeated flights of the strapdown airborne gravimetry system SGA-WZ carried out in Greenland. Comparing to the solutions of using finite impulse response filter (FIR), the new results are improved by 40% and 10% of root mean square (RMS) of internal consistency and external accuracy, respectively. OPEN ACCESS ISPRS Int. J. Geo-Inf. 2015, 4 2206

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland

An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier mari...

متن کامل

Long-Term Stability of the SGA-WZ Strapdown Airborne Gravimeter

Accelerometers are one of the most important sensors in a strapdown airborne gravimeter. The accelerometer's drift determines the long-term accuracy of the strapdown inertial navigation system (SINS), which is the primary and most critical component of the strapdown airborne gravimeter. A long-term stability test lasting 104 days was conducted to determine the characteristics of the strapdown a...

متن کامل

Experimental Investigations on Airborne Gravimetry Based on Compressed Sensing

Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defe...

متن کامل

Partial Discharge Signal Denoising Using the Empirical Mode Decomposition

This paper presents the findings of an investigation into Partial Discharge signal denoising using techniques based on Empirical Mode Decomposition. The denoising techniques are based on thresholding the Intrinsic Mode Functions which result from the Empirical Mode Decomposition of a signal. The results of the tests carried out show clearly that these techniques can produce excellent results wh...

متن کامل

EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach

Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram  (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ISPRS Int. J. Geo-Information

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015